Abstract
Lambda exonuclease (λ exo) plays an important role in the resection of DNA ends for DNA repair. Currently, it is also a widely used enzymatic tool in genetic engineering, DNA-binding protein mapping, nanopore sequencing and biosensing. Herein, we disclose two noncanonical properties of this enzyme and suggest a previously undescribed hydrophobic interaction model between λ exo and DNA substrates. We demonstrate that the length of the free portion of the substrate strand in the dsDNA plays an essential role in the initiation of digestion reactions by λ exo. A dsDNA with a 5′ non-phosphorylated, two-nucleotide-protruding end can be digested by λ exo with very high efficiency. Moreover, we show that when a conjugated structure is covalently attached to an internal base of the dsDNA, the presence of a single mismatched base pair at the 5′ side of the modified base may significantly accelerate the process of digestion by λ exo. A detailed comparison study revealed additional π–π stacking interactions between the attached label and the amino acid residues of the enzyme. These new findings not only broaden our knowledge of the enzyme but will also be very useful for research on DNA repair and in vitro processing of nucleic acids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.