Abstract
Classically Class IB phosphoinositide 3-kinase (PI3Kγ) plays a role in extracellular signal-regulated kinase (ERK) activation following G-protein coupled receptor (GPCR) activation. Knock-down of PI3Kγ unexpectedly resulted in loss of ERK activation to receptor tyrosine kinase agonists such as epidermal growth factor or insulin. Mouse embryonic fibroblasts (MEFs) or primary adult cardiac fibroblasts isolated from PI3Kγ knock-out mice (PI3KγKO) showed decreased insulin-stimulated ERK activation. However, expression of kinase-dead PI3Kγ resulted in rescue of insulin-stimulated ERK activation. Mechanistically, PI3Kγ sequesters protein phosphatase 2A (PP2A), disrupting ERK-PP2A interaction, as evidenced by increased ERK-PP2A interaction and associated PP2A activity in PI3KγKO MEFs, resulting in decreased ERK activation. Furthermore, β-blocker carvedilol-mediated β-arrestin-dependent ERK activation is significantly reduced in PI3KγKO MEF, suggesting accelerated dephosphorylation. Thus, instead of classically mediating the kinase arm, PI3Kγ inhibits PP2A by scaffolding and sequestering, playing a key parallel synergistic step in sustaining the function of ERK, a nodal enzyme in multiple cellular processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.