Abstract

The nature of the classical canonical phase-space variables for gravity suggests that the associated quantum field operators should obey affine commutation relations rather than canonical commutation relations. Prior to the introduction of constraints, a primary kinematical representation is derived in the form of a reproducing kernel and its associated reproducing kernel Hilbert space. Constraints are introduced following the projection operator method, which involves no gauge fixing, no complicated moduli space, nor any auxiliary fields. The result, which is only qualitatively sketched in the present paper, involves another reproducing kernel with which inner products are defined for the physical Hilbert space and which is obtained through a reduction of the original reproducing kernel. Several of the steps involved in this general analysis are illustrated by means of analogous steps applied to one-dimensional quantum mechanical models. These toy models help in motivating and understanding the analysis in the case of gravity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.