Abstract

This paper investigates the Lagrangian-to-Eulerian transformation approach to the construction of noncanonical Poisson brackets for the conservative part of elastic solids and micromorphic elastic solids. The Dirac delta function links Lagrangian canonical variables and Eulerian state variables, producing noncanonical Poisson brackets from the corresponding canonical brackets. Specifying the Hamiltonian functionals generates the evolution equations for these state variables from the Poisson brackets. Different elastic strain tensors, such as the Green deformation tensor, the Cauchy deformation tensor, and the higher-order deformation tensor, are appropriate state variables in Poisson bracket formalism since they are quantities composed of the deformation gradient. This paper also considers deformable directors to comprise the three elastic strain density measures for micromorphic solids. Furthermore, the technique of variable transformation is also discussed when a state variable is not conserved along with the motion of the body.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.