Abstract
In the present paper a computational algorithm suitable for large-eddy simulations of fluid/structure problems that are commonly encountered in biological flows is presented. It is based on a mixed Eurelian-Lagrangian formulation, where the governing equations are solved on a fixed grid, which is not aligned with the body surface, and the nonslip conditions are enforced via local reconstructions of the solution near the solid interface. With this strategy we can compute the flow around complex stationary/moving boundaries and at the same time maintain the efficiency and optimal conservation properties of the underlying Cartesian solver. A variety of examples, that establish the accuracy and range of applicability of the method are included.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.