Abstract

Metal-nitrogen-carbon single-atom catalysts (SACs) have recently emerged as selective electrocatalysts for the reduction of CO2 to CO, but their ability to further electroreduce CO is poor. Here, based on constant-potential density functional theory simulations, we predict that Co-N-M (M = Fe, Co) SACs with nonbonding metallic centers bridged by a common nitrogen atom can catalyze four-electron reduction of CO to methanol at an ultralow overpotential of 220-310 mV. We show that the metal atoms in the SACs are terminated by H species which prevent the formation of σ bonding between CO and the metal atoms. Thanks to the nonbonding electrostatic repulsion between Co and its adjacent M atom, the Co dxz band is broadened and shifted toward the Fermi level, leading to enhanced dxz - 2π* interaction that gives rise to stable CO adsorption and promotes its active and selective reduction. This work offers an alternative strategy to tackle the challenge of CO electroreduction on SACs and highlights the role of nonbonding metal-metal interactions in modulating adsorption properties of SACs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.