Abstract

In previous years, with the rapid exhaustion of the capacity in wide area networks led by Internet and multimedia applications, demand for high bandwidth has been growing at a very fast pace. Wavelength-division multiplexing (WDM) is a promising technique for utilizing the huge available bandwidth in optical fibers. We consider efficient designs of nonblocking WDM permutation switching networks. Such designs require nontrivial extensions from the existing designs of electronic switching networks. We first propose several permutation models in WDM switching networks ranging from no wavelength conversion, to limited wavelength conversion, to full wavelength conversion, and analyze the network performance in terms of the permutation capacity and network cost, such as the number of optical cross-connect elements and the number of wavelength converters required for each model. We then give two methods for constructing nonblocking multistage WDM switching networks to reduce the network cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.