Abstract

Non-bicarbonate intracellular pH buffering values of skeletal and cardiac muscles were measured for 16 species of Australian reptiles from four orders (snakes, skelctal 19–36 slykes, cardiac 9–17 slykes; lizards, skeletal 25–54 slykes, cardiac 17–19 slykes; turtles, skeletal 25–43 slykes, cardiac 11–24 slykes; crocodile, skeletal 43 slykes). Although a positive correlation between pH buffering capacity and dependence on anaerobic muscle work was found, even the highest reptilian pH buffering values were low relative to equivalent white anaerobic muscles of fish, birds, and mammals. The low non-bicarbonate intracellular pH buffering capacity of reptilian muscle arises through lower contributions from proteins (10–14 slykes), non-protein histidine (7–18 slykes) and phosphate (5–15 slykes). It is concluded that while other vertebrates depend on these intracellular buffers for regulating muscle pH during anaerobic muscle work, reptiles rely less on buffering and instead may tolerate greater pH fluctuations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call