Abstract

Recent discoveries have revealed that simple repeating DNA sequences, which are known to adopt non-B DNA conformations (such as triplexes, cruciforms, slipped structures, left-handed Z-DNA and tetraplexes), are mutagenic. The mutagenesis is due to the non-B DNA conformation rather than to the DNA sequence per se in the orthodox right-handed Watson-Crick B-form. The human genetic consequences of these non-B structures are approximately 20 neurological diseases, approximately 50 genomic disorders (caused by gross deletions, inversions, duplications and translocations), and several psychiatric diseases involving polymorphisms in simple repeating sequences. Thus, the convergence of biochemical, genetic and genomic studies has demonstrated a new paradigm implicating the non-B DNA conformations as the mutagenesis specificity determinants, not the sequences as such.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.