Abstract

The existing solutions of Navier–Stokes and energy equations in the literature regarding the three-dimensional problem of stagnation-point flow either on a flat plate or on a cylinder are only for the case of axisymmetric formulation. The only exception is the study of three-dimensional stagnation-point flow on a flat plate by Howarth (1951, “The Boundary Layer in Three-Dimensional Flow—Part II: The Flow Near Stagnation Point,” Philos. Mag., 42, pp. 1433–1440), which is based on boundary layer theory approximation and zero pressure assumption in direction of normal to the surface. In our study the nonaxisymmetric three-dimensional steady viscous stagnation-point flow and heat transfer in the vicinity of a flat plate are investigated based on potential flow theory, which is the most general solution. An external fluid, along z-direction, with strain rate a impinges on this flat plate and produces a two-dimensional flow with different components of velocity on the plate. This situation may happen if the flow pattern on the plate is bounded from both sides in one of the directions, for example x-axis, because of any physical limitation. A similarity solution of the Navier–Stokes equations and energy equation is presented in this problem. A reduction in these equations is obtained by the use of appropriate similarity transformations. Velocity profiles and surface stress-tensors and temperature profiles along with pressure profile are presented for different values of velocity ratios, and Prandtl number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.