Abstract

Abstract The repeating fast radio bursts (FRBs) 180916.J0158 and 121102 are visible during periodically occurring windows in time. We consider the constraints on internal magnetic fields and geometries if the cyclical behavior observed for FRB 180916.J0158 and FRB 121102 is due to the precession of magnetars. In order to frustrate vortex line pinning we argue that internal magnetic fields must be stronger than about 1016 G, which is large enough to prevent superconductivity in the core and destroy the crustal lattice structure. We conjecture that the magnetic field inside precessing magnetars has three components: (1) a dipole component with characteristic strength ∼ 1014 G; (2) a toroidal component with characteristic strength ∼ 1015–1016 G that only occupies a modest fraction of the stellar volume; and (3) a disordered field with characteristic strength ∼ 1016 G. The disordered field is primarily responsible for permitting precession, which stops once this field component decays away, which we conjecture happens after ∼1000 yr. Conceivably, as the disordered component damps bursting activity diminishes and eventually ceases. We model the quadrupolar magnetic distortion of the star, which is due to its ordered components primarily, as triaxial and very likely prolate. We address the question of whether the spin frequency ought to be detectable for precessing, bursting magnetars by constructing a specific model in which bursts happen randomly in time with random directions distributed in or between cones relative to a single symmetry axis. Within the context of these specific models, we find that there are precession geometries for which detecting the spin frequency is very unlikely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.