Abstract

Abstract In this paper, the nonlinear Volterra series expansion is extended and used to describe certain types of nonautonomous differential equations related to the inverse scattering problem in nuclear physics. The nonautonomous Volterra series expansion lets us determine a dynamic, polynomial approximation of the variable phase approximation (VPA), which is used to determine the phase shifts from nuclear potentials through first-order nonlinear differential equations. By using the first-order Volterra expansion, a robust approximation is formulated to the inverse scattering problem for weak potentials and/or high energies. The method is then extended with the help of radial basis function neural networks by applying a nonlinear transformation on the measured phase shifts to be able to model the scattering system with a linear approximation given by the first-order Volterra expansion. The method is applied to describe the ${}^1S_0$ NN potentials in neutron+proton scattering below 200 MeV laboratory kinetic energies, giving physically sensible potentials and below $1\%$ averaged relative error between the recalculated and the measured phase shifts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.