Abstract

In the presence of a linear potential with an arbitrary time-dependence, Hirota method is developed carefully for applying into the effective mean-field model of quasi-one-dimensional Bose–Einstein condensation with repulsive interaction. We obtain the exact nonautonomous soliton solution (NSS) analytically. These solutions show that the time-dependent potential can affect the velocity of NSS. In some special cases the velocity has the character of both increase and oscillation with time. A detail analysis for the asymptotic behaviour of solutions shows that the collision of two NSSs is elastic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.