Abstract

The enantiomers of 34 pharmaceutical weak-base analytes were separated by nonaqueous capillary electrophoresis in acidic methanol background electrolytes using the sodium salt of the new, single-isomer chiral resolving agent, octakis(2,3-O-dimethyl-6-O-sulfo)-gamma-cyclodextrin (ODMS). The effective mobilities, separation selectivities and peak resolution values of the weak-base analytes were determined as a function of the ODMS concentration in the 0-40 mM range and were found to follow the theoretical predictions of the charged resolving agent migration model (CHARM model) modified for ionic strength effects. Fast, efficient separations were achieved for both comparatively small and large enantiomers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call