Abstract

Two enzymes, Mucor javanicus lipase and subtilisin Carlsberg (SC), catalyzed the nonaqueous acylation of doxorubicin (DOX). Compared to the untreated enzyme the rate of DOX acylation at the C-14 position with vinyl butyrate in toluene was 25-fold higher by lipase ion-paired with Aerosol OT (AOT) and 5-fold higher by lipase activated by 98% (w/w) KCl co-lyophilization (3.21 and 0.67 mumol/min g-lipase, respectively, vs 0.13 mumol/min g-lipase). Particulate subtilisin Carlsberg (SC) was nearly incapable of DOX acylation, but ion-paired SC (AOT-SC) catalyzed acylation at a rate of 2.85 mumol/min g-protease. The M. javanicus formulations, AOT-SC, and SC exclusively acylated the C14 primary hydroxyl group of DOX. Co-lyophilization of SC with 98% (w/w) KCl expanded the enzyme's regiospecificity such that KCl-SC additionally acylated the C4' hydroxyl and C3' amine groups. The total rate of DOX conversion with KCl-SC was 56.7 mumol/min g-protease. The altered specificity of KCl-SC is a new property of the enzyme imparted by the salt activation, and represents the first report of unnatural regioselectivity exhibited by a salt-activated enzyme. Using AOT-SC catalysis, four unique selectively acylated DOX analogues were generated, and KCl-SC was used to prepare DOX derivatives acylated at the alternative sites. Cytotoxicities of select derivatives were evaluated against the MCF7 breast cancer cell line (DOX IC50 = 27 nM) and its multidrug-resistant sub-line, MCF7-ADR (DOX IC50 = 27 muM). The novel derivative 14-(2-thiophene acetate) DOX was relatively potent against both cell lines (IC50 of 65 nM and 8 muM, respectively) and the 14-(benzyl carbonate) DOX analogue was as potent as DOX against the MCF7 line (25 nM). Activated biocatalysts and their novel regioselectivity differences thus enabled single-step reaction pathways to an effective collection of doxorubicin analogues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call