Abstract

There is an expectation that to meet regulatory requirements, and avoid or minimize animal testing, integrated approaches to testing and assessment will be needed that rely on assays representing key events (KEs) in the skin sensitization adverse outcome pathway. Three non-animal assays have been formally validated and regulatory adopted: the direct peptide reactivity assay (DPRA), the KeratinoSens™ assay and the human cell line activation test (h-CLAT). There have been many efforts to develop integrated approaches to testing and assessment with the "two out of three" approach attracting much attention. Here a set of 271 chemicals with mouse, human and non-animal sensitization test data was evaluated to compare the predictive performances of the three individual non-animal assays, their binary combinations and the "two out of three" approach in predicting skin sensitization potential. The most predictive approach was to use both the DPRA and h-CLAT as follows: (1) perform DPRA - if positive, classify as sensitizing, and (2) if negative, perform h-CLAT - a positive outcome denotes a sensitizer, a negative, a non-sensitizer. With this approach, 85% (local lymph node assay) and 93% (human) of non-sensitizer predictions were correct, whereas the "two out of three" approach had 69% (local lymph node assay) and 79% (human) of non-sensitizer predictions correct. The findings are consistent with the argument, supported by published quantitative mechanistic models that only the first KE needs to be modeled. All three assays model this KE to an extent. The value of using more than one assay depends on how the different assays compensate for each other's technical limitations. Copyright © 2017 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.