Abstract

Ternary blending based on an alloy-like model has been proved as an efficient strategy for high-efficiency organic solar cells (OSCs). However, the third component that possesses excellent miscibility with host materials in the alloy-like model may trigger adverse effects for the active layer, especially at a high doping ratio. In this work, we propose a new concept of nonalloy model for the ternary OSCs in which the third component presents moderate miscibility with the acceptor and distributes at the interspace between donor and acceptor domains. The nonalloy model is constructed based on the PM6:Y6 system, and a Y6 analogue (BTP-MCA) is synthesized as the third component. The BTP-MCA can maintain initial excellent morphology of the active layer and enhance the morphological stability by acting as a frame around the host materials. As a result, ternary OSCs based on the PM6:Y6:BTP-MCA blend exhibit an impressive efficiency of 17.0% with a high open-circuit voltage of 0.87 V. Moreover, the devices present a high doping tolerance (keeping high efficiency with a doping ratio of 50%) and improved stability. This work indicates that the nonalloy model can be a promising method to fabricate efficient and stable ternary OSCs apart from the conventional alloy-like model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call