Abstract

We theoretically investigate the nonadiabatic spectral redshift of high-order harmonics with the help of a VUV pulse. It is found that the nonadiabatic spectral redshift of high-order harmonics can be observed when a weak VUV pulse is properly added in the falling part of the fundamental laser due to the nonadiabatic response of the dipole to rapid change of laser intensity. Further time-frequency analysis shows that the high-order harmonics are mainly generated in the falling part of the fundamental pulse. This is because the VUV pulse enhances the ionization in the falling part of the fundamental pulse by the 1s-2p transition of $\text{H}{e}^{+}$. In addition, this scheme is also used to observe the nonadiabatic spectral blueshift of high-order harmonics by changing the time delay between the fundamental laser and the VUV pulse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.