Abstract

The nonadiabatic dynamics of the reactive quenching channel of the OH(A2Σ+) + H2/D2 collisions is investigated with a semiclassical surface hopping method, using a recently developed four-state diabatic potential energy matrix (DPEM). In agreement with experimental observations, the H2O/HOD products are found to have significant vibrational excitation. Using a Gaussian binning method, the H2O vibrational state distribution is determined. The preferential energy disposal into the product vibrational modes is rationalized by an extended Sudden Vector Projection model, in which the h and g vectors associated with the conical intersection are found to have large projections with the product normal modes. However, our calculations did not find significant insertion trajectories, suggesting the need for further improvement of the DPEM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.