Abstract

We extend the theory of quantum state engineering (QSE) to the open quantum systems which simultaneously suffer time-dependent decoherence and time-independent decoherence. A hybrid approach is proposed to effectively realize QSE by combination of time-dependent decoherence-free subspaces and shortcuts to adiabaticity theories. As an application, a concrete single-qubit QSE example with an open five-level system is presented. Numerical simulations confirm that the approach is reliable and robust against both of time-dependent decoherence and time-independent decoherence. Certain dissipation effects are no longer harmful but play a positive role in the QSE. In addition, the approach can be generalized to realize QSE in high-dimensional quantum systems. Therefore, this proposal is quite useful for quantum computation and quantum information processing in open systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.