Abstract

Implementing holonomic quantum computation is a challenging task as it requires complicated interaction among multilevel systems. Here we propose to implement nonadiabatic holonomic quantum computation based on dressed-state qubits in circuit QED. An arbitrary holonomic single-qubit gate can be conveniently achieved using external microwave fields and tuning their amplitudes and phases. Meanwhile, nontrivial two-qubit gates can be implemented in a coupled-cavities scenario assisted by a grounding SQUID with tunable interaction, where the tuning is achieved by modulating the ac flux threaded through the SQUID. In addition, our proposal is directly scalable, up to a two-dimensional lattice configuration. In the present scheme, the dressed states involve only the lowest two levels of each transmon qubit and the effective interactions exploited are all of resonant nature. Therefore, we release the main difficulties for physical implementation of holonomic quantum computation on superconducting circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.