Abstract

We formulate a rigorous method for calculating a nonadiabatic (frequency-dependent) exchange-correlation (XC) kernel appropriate for accurate description of both equilibrium and nonequilibrium properties of strongly correlated systems within the time-dependent density functional theory (TDDFT) via the charge susceptibility, which is in turn obtained from dynamical mean field theory (DMFT) based on the effective multi-orbital Hubbard model. Application to the simple case of the one-orbital Hubbard model already shows the importance of the nonadiabatic kernel as it leads to significant modification of the excitation spectrum—shifting the (adiabatic) peak and disclosing another that is reminiscent of the solution from DMFT. The impact of dynamical effects, naturally included through the nonadiabaticity of the XC kernel, becomes even more transparent in our consideration of the nonequilibrium charge-density response of a multi-orbital perovskite, YTiO3, to a perturbation by a femtosecond (fs) laser pulse. These initial results indicate that electron–electron correlations and nonadiabatic features may significantly affect the spectrum and nonequilibrium properties of strongly correlated systems. We also propose an algorithm for extension of the approach to non-linear response. The transparency and computational efficiency of this non-adiabatic TDDFT+DMFT approach opens the door to examination of the spectra and response of multi-orbital systems with many nonequivalent atoms—bulk material, films and nanostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.