Abstract

A method of simulating two-dimensional infrared spectra accounting for nonadiabatic effects is presented. The method is applied to the amide I modes of a dipeptide. The information necessary to construct the time-dependent Hamiltonian for the system is extracted from molecular dynamics simulations using a recently published ab initio-based model. It is shown that the linear absorption spectrum agrees with experiment only if the nonadiabatic effects are accounted for. The two-dimensional infrared spectrum is predicted for a range of mixing times. It is shown that population transfer between the amide I site vibrations affects the anisotropy at longer mixing times. It is also demonstrated that the population transfer can, to a good approximation, be extracted from the simulated spectra using a procedure that should also be applicable to experimental spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.