Abstract

The state-to-state dynamics of the H+D2 reaction is studied by the reactant-product decoupling method using the double many-body expansion potential energy surface. Two approaches are compared: one uses only the lowest adiabatic sheet while the other employs both coupled diabatic sheets. Rotational distributions for the reaction H+D2 (upsilon = 0, j = 0)-->HD(upsilon' = 3, j')+D are obtained at eight different collision energies between 1.49 and 1.85 eV; no significant difference are found between the two approaches. Initial state-selected total reaction probabilities and integral cross sections are also given for energies ranging from 0.25 up to 2.0 eV with extremely small differences being observed between the two sets of results, thus showing that the nonadiabatic effects in the title reaction are negligible at least for small energies below 2.0 eV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.