Abstract

The development of the liquid microjet technique by Faubel and co-workers has enabled the investigation of high vapor pressure liquids and solutions utilizing high-vacuum methods. One such method is photoelectron spectroscopy (PES), which allows one to probe the electronic properties of a sample through ionization in a state-specific manner. Liquid microjets consisting of pure solvents and solute-solvent systems have been studied with great success utilizing PES and, more recently, time-resolved PES (TRPES). Here, we discuss progress made over recent years in understanding the solvation and excited state dynamics of the solvated electron and nucleic acid constituents (NACs) using these methods, as well as the prospect for their future.The solvated electron is of particular interest in liquid microjet experiments as it represents the simplest solute system. Despite this simplicity, there were still many unresolved questions about its binding energy and excited state relaxation dynamics that are ideal problems for liquid microjet PES. In the work discussed in this Account, accurate binding energies were measured for the solvated electron in multiple high vapor pressure solvents. The advantages of liquid jet PES were further highlighted in the femtosecond excited state relaxation studies on the solvated electron in water where a 75 ± 20 fs lifetime attributable to internal conversion from the excited p-state to a hot ground state was measured, supporting a nonadiabatic relaxation mechanism.Nucleic acid constituents represent a class of important solutes with several unresolved questions that the liquid microjet PES method is uniquely suited to address. As TRPES is capable of tracking dynamics with state-specificity, it is ideal for instances where there are multiple excited states potentially involved in the dynamics. Time-resolved studies of NAC relaxation after excitation using ultraviolet light identified relaxation lifetimes from multiple excited states. The state-specific nature of the TRPES method allowed us to identify the lack of any signal attributable to the 1nπ* state in thymine derived NACs. The femtosecond time resolution of the technique also aided in identifying differences between the excited state lifetimes of thymidine and thymidine monophosphate. These have been interpreted, aided by molecular dynamics simulations, as an influence of conformational differences leading to a longer excited state lifetime in thymidine monophosphate.Finally, we discuss advances in tabletop light sources extending into the extreme ultraviolet and soft X-ray regimes that allow expansion of liquid jet TRPES to full valence band and potentially core level studies of solutes and pure liquids in liquid microjets. As most solutes have ground state binding energies in the range of 10 eV, observation of both excited state decay and ground state recovery using ultraviolet pump-ultraviolet probe TRPES has been intractable. With high-harmonic generation light sources, it will be possible to not only observe complete relaxation pathways for valence level dynamics but to also track dynamics with element specificity by probing core levels of the solute of interest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call