Abstract

On-the-fly ab initio molecular dynamics calculations have been performed to investigate the relaxation mechanism of green fluorescent protein chromophore anion under vacuum. The CASSCF surface hopping simulation method based on Zhu-Nakamura theory is applied to present the real-time conformational changes of the target molecule. The static calculations and dynamics simulation results suggest that not only the twisting motion around bridging bonds between imidazolinone and phenoxy groups but the strength mode of C=O and pyramidalization character of bridging atom are major factors on the ultrafast fluorescence quenching process of the isolated chromophore anion. The abovementioned factors bring the molecule to the vicinity of conical intersections on its potential energy surface and to finish the internal conversion process. A Hula-like twisting pattern is displayed during the relaxation process and the entire decay process disfavors a photoswitching pattern which corresponds to cis-trans photoisomerization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call