Abstract

With light-matter interaction extending into the strong regime, as well as rapid development of laser technology, systems subjecting to a time-periodic perturbation have attracted broad attention. Floquet theorem and Floquet time-independent Hamiltonian are powerful theoretical frameworks to investigate the systems subjected to time-periodic drivings. In this study, we extend the previous generalized surface hopping (SH) algorithm near a metal surface (J. Chem. Theory Comput. 2017, 13, 6, 2430-2439) to the Floquet space, and hence, we develop a generalized Floquet representation-based SH (FR-SH) algorithm. Here, we consider an open quantum system with fast drivings. We expect that the present algorithm will be useful for understanding the chemical processes of molecules under time-periodic driving near the metal surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.