Abstract

We report the results of ab initio calculations of the nonadiabatic Born coupling terms for the two lowest-lying singlet A″ excited states of ozone ( 1 A 2 and 1 B 1 in C 2v symmetry) whose electronic potential energy surfaces exhibit a crossing at a bond angle near 120°. Since photoexcitation from the ground state to these A″ states is believed to be responsible for the Chappuis band of ozone, determination of the nonadiabatic coupling terms in the molecular Hamiltonian is therefore likely to be of importance in understanding the predissociative features of the spectrum. The nuclear derivative coupling matrix elements are computed between ab initio electronic wavefunctions obtained from multi-reference configuration interaction (MRD-CI) calculations in a basis of configuration state functions constructed from MCSCF orbitals. The first-derivative nonadiabatic coupling terms are calculated analytically in a manner similar to the calculation of analytic energy gradients, thereby avoiding the cumbersome numerical differentiation of CI and SCF coefficients. The calculated analytical derivative coupling matrix elements are used to determine a suitable transformation to a quasidiabatic basis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.