Abstract

Nonadiabatic corrections in molecules composed of a few atoms are considered. It is demonstrated that a systematic perturbative expansion around the adiabatic solution is possible, with the expansion parameter being the electron-nucleus mass ratio to the 3/4 power. Closed form formulas for the leading corrections to the wave function and to the energy are derived. Their applicability is demonstrated by a comparison of numerical results for the hydrogen molecule with the former nonadiabatic calculations and the experimental values. Good agreement with the recent experiment is achieved for the ground state dissociation energy of both H(2) and D(2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.