Abstract

Variational (≃30 000 determinants) and perturbational (≃3.5 million determinants) Localized Multireference Configuration Interaction (LMRCI) calculations includingf polarization functions are made to study the role played by the three-body terms in the stabilization energy of three selected geometries of the silver trimer: linear, equilateral and a Jahn-Teller obtuse triangle conformation. A comparative analysis of the relative stability of these geometries is done through a many-body decomposition of the interaction energy. Like in Cu3, the most symmetrical arrangement (i.e. an equilateral triangle) is found to be less stable than the obtuse triangle because it has the highest three-body repulsion energy. The absolute minimum is the obtuse triangle having a Jahn-Teller stabilization energy of 328 cm−1. Unlike Cu3, the linear geometry is found to be less stable than the equilateral by 1282cm−1. Results show again the importance of three-body terms in the total interaction energy of these trimers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.