Abstract

We introduce a version of the nonadditive topological pressure for flows and we describe some of its main properties. In particular, we discuss how the nonadditive topological pressure varies with the data and we establish a variational principle in terms of the Kolmogorov–Sinai entropy. We also consider corresponding capacity topological pressures. In the particular case of subadditive families of functions we give a simpler characterization of these pressures. To the possible extent we follow corresponding arguments for maps, although various proofs require nontrivial modifications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.