Abstract

AbstractWithout any additional conditions on subadditive potentials, this paper defines subadditive measure-theoretic pressure, and shows that the subadditive measure-theoretic pressure for ergodic measures can be described in terms of measure-theoretic entropy and a constant associated with the ergodic measure. Based on the definition of topological pressure on non-compact sets, we give another equivalent definition of subadditive measure-theoretic pressure, and obtain an inverse variational principle. This paper also studies the superadditive measure-theoretic pressure which has similar formalism to the subadditive measure-theoretic pressure. As an application of the main results, we prove that an average conformal repeller admits an ergodic measure of maximal Hausdorff dimension. Furthermore, for each ergodic measure supported on an average conformal repeller, we construct a set whose dimension is equal to the dimension of the measure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.