Abstract
AbstractThe nonadditive kinetic potential is a key element in density‐dependent embedding methods. The correspondence between the ground‐state density and the total effective Kohn–Sham potential provides the basis for various methods to construct the nonadditive kinetic potential for any pair of electron densities. Several research groups used numerical or analytical inversion procedures to explore this strategy which overcomes the failures of known explicit density functional approximations. The numerical inversions, however, apply additional approximations/simplifications. The relations known for the exact quantities cannot be assumed to hold for quantities obtained in numerical inversions. The exact relations are discussed with special emphasis on such issues as: the admissibility of the densities for which the potential is constructed, the choice of densities to be used as independent variables, self‐consistency between the potentials and observables calculated using the embedded wavefunction, and so forth. The review focuses on how these issues are treated in practice. The review is supplemented with the analysis of the inverted potentials for weakly overlapping pairs of electron densities—the case not studied previously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.