Abstract
Hybrid Nile tilapia (Oreochromis niloticus, ♀) × blue tilapia (O. aureus, ♂) is a widely cultured tilapia variety due to its growth vigor compared to the parent species. As a peptide hormone, insulin-like growth factor 1 (IGF-1) plays a critical role in regulating somatic growth. The present study focuses on the expression characteristics of IGF-1 in hybrid tilapia. The cloned complete open reading frame of IGF-1 in hybrid tilapia is 549 bp in length, encoding a protein of 182 amino acids. The deduced protein is highly similar to that of Nile tilapia and blue tilapia. IGF-1 was found to be primarily expressed in the liver and muscle in the hybrid; lower expression levels were found in other tissues such as the intestine, spleen, and head-kidney. Increased mRNA expression was observed in the liver and muscle of the hybrid compared to Nile tilapia and blue tilapia, indicating a nonadditive expression pattern in the hybrid. An IGF-1 SNP site (397 site: C in Nile tilapia, G in blue tilapia) for differentiating the Nile tilapia or blue tilapia subgenome in hybrids was identified. Pyrosequencing analysis of the liver transcriptome indicated that most of the hybrids (9 of 10 individuals) predominantly expressed the G allele, demonstrating bias of the blue tilapia subgenome. The present study provides novel data indicating, for the first time, overall gene expression of IGF-1 and allele-specific expression in hybrid tilapia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.