Abstract

Originated from analyzing nonactive power loss, a novel optimization method and modulation solution for bidirectional isolated dual-active-bridge (DAB) dc-dc converters are proposed in order to achieve high efficiency in a wide operating range. A comprehensive nonactive power loss model is developed, including both the nonactive components delivered back to the source and from the load. This paper points out that when the minimum nonactive power loss is achieved, zero-voltage soft switching can be naturally fulfilled. The optimal phase-shift pair obtained by the proposed method can keep low values of both root mean square (RMS) current and circulating power. Rather than using ideal power flow analysis, the nonactive power loss model directly embodies practical nonideal factors, including device voltage drops. Based on the analysis, an extended dual phase shift is proposed, and different operation cases are analyzed with comparison of performance indices. Experimental tests verify the theoretical analysis and show effectiveness of the proposed approach to achieve nonactive power loss minimization and efficiency improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.