Abstract

A supertube is a supersymmetric configuration in string theory which occurs when a pair of branes spontaneously polarizes and generates a new dipole charge extended along a closed curve. The dipole charge of a codimension-2 supertube is characterized by the U-duality monodromy as one goes around the supertube. For multiple codimension-2 supertubes, their monodromies do not commute in general. In this paper, we construct a supersymmetric solution of five-dimensional supergravity that describes two supertubes with such non-Abelian monodromies, in a certain perturbative expansion. In supergravity, the monodromies are realized as the multi-valuedness of the scalar fields, while in higher dimensions they correspond to non-geometric duality twists of the internal space. The supertubes in our solution carry NS5 and 522 dipole charges and exhibit the same monodromy structure as the SU(2) Seiberg-Witten geometry. The perturbative solution has AdS2 × S2 asymptotics and vanishing four-dimensional angular momentum. We argue that this solution represents a microstate of four-dimensional black holes with a finite horizon and that it provides a clue for the gravity realization of a pure-Higgs branch state in the dual quiver quantum mechanics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call