Abstract

A mechanism using the position-dependent gauge coupling is proposed to localize non-Abelian gauge fields on domain walls in five-dimensional space-time. Low-energy effective theory posseses a massless vector field, and a mass gap. The four-dimensional gauge invariance is maintained intact. We obtain perturbatively the four-dimensional Coulomb law for static sources on the domain wall. BPS domain wall solutions with the localization mechanism are explicitly constructed in the U(1)xU(1) supersymmetric gauge theory coupling to the non-Abelian gauge fields only through the cubic prepotential, which is consistent with the general principle of supersymmetry in five-dimensional space-time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.