Abstract

We review pedagogically non-Abelian discrete groups, which play an important role in the particle physics. We show group-theoretical aspects for many concrete groups, such as representations, their tensor products. We explain how to derive, conjugacy classes, characters, representations, and tensor products for these groups (with a finite number). We discussed them explicitly for $S_N$, $A_N$, $T'$, $D_N$, $Q_N$, $\Sigma(2N^2)$, $\Delta(3N^2)$, $T_7$, $\Sigma(3N^3)$ and $\Delta(6N^2)$, which have been applied for model building in the particle physics. We also present typical flavor models by using $A_4$, $S_4$, and $\Delta (54)$ groups. Breaking patterns of discrete groups and decompositions of multiplets are important for applications of the non-Abelian discrete symmetry. We discuss these breaking patterns of the non-Abelian discrete group, which are a powerful tool for model buildings. We also review briefly about anomalies of non-Abelian discrete symmetries by using the path integral approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call