Abstract

We propose a general method for deformation quantization of any second-class constrained system on a symplectic manifold. The constraints determining an arbitrary constraint surface are in general defined only locally and can be components of a section of a non-trivial vector bundle over the phase-space manifold. The covariance of the construction with respect to the change of the constraint basis is provided by introducing a connection in the ``constraint bundle'', which becomes a key ingredient of the conversion procedure for the non-scalar constraints. Unlike in the case of scalar second-class constraints, no Abelian conversion is possible in general. Within the BRST framework, a systematic procedure is worked out for converting non-scalar second-class constraints into non-Abelian first-class ones. The BRST-extended system is quantized, yielding an explicitly covariant quantization of the original system. An important feature of second-class systems with non-scalar constraints is that the appropriately generalized Dirac bracket satisfies the Jacobi identity only on the constraint surface. At the quantum level, this results in a weakly associative star-product on the phase space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.