Abstract

This work proposes a novel Q-learning algorithm to solve the problem of non-zero sum Nash games of linear time invariant systems with N-players (control inputs) and centralized uncertain/unknown dynamics. We first formulate the Q-function of each player as a parametrization of the state and all other the control inputs or players. An integral reinforcement learning approach is used to develop a model-free structure of N-actors/N-critics to estimate the parameters of the N-coupled Q-functions online while also guaranteeing closed-loop stability and convergence of the control policies to a Nash equilibrium. A 4th order, simulation example with five players is presented to show the efficacy of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.