Abstract

With the vigorous development of the Internet of Things, 5G technology, and artificial intelligence, flexible wearable sensors have received great attention. As a simple and low-cost power supply in wearable sensors, the triboelectric nanogenerator (TENG) has a wide range of applications in the field of flexible electronics. However, most polymers are thermally poor conductors (less than 0.1 W/(m·K)), resulting in insufficient heat dissipation performance and limiting the development of TENG. In this study, a high-performance non-woven fabric TENG with strong thermal conductivity (0.26 W/m·K) was achieved by introducing ZrB2 into the polyurethane (PU) matrix. The excellent output performance with an open circuit voltage (Voc) of 347.6 V, a short circuit current (Isc) of 3.61 μA, and an accumulated charge of 142.4 nC endows it with good sensitivity. The electrospun PU/ZrB2 composites exhibit excellent sensing performance to detect body movements in situ, such as pressing, clapping, running, and walking. Moreover, the generated power can light up 224 LED bulbs as a demonstration of self-powering ability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.