Abstract

The 1H NMR spectrum of the tetradeoxynucleotide d(TpCpGpA) was examined as a function of temperature, pH, and concentration. At pH 7 and above the solution conformation for this oligodeoxynucleotide appears to be a mixture of random coil and Watson-Crick duplex. At 25 degrees C, a pH titration of d(TpCpGpA) shows that distinct conformational changes occur as the pH is lowered below 7.0. These conformational changes are reversible upon readjusting the pH to neutrality, indicating the presence of a pH-dependent set of conformational equilibria. At 25 degrees C, the various conformational states in the mixture are in rapid exchange on the NMR time scale. Examination of the titration curve shows the presence of distinct conformational states at pH greater than 7, and between pH 4 and pH 5. At pH less than 4, a third conformational state is present. When the pH titration is repeated at 5 degrees C, the conformational equilibria are in slow exchange on the NMR time scale; distinct signals from each conformational state are observable. The stable conformational state present between pH 4 and pH 5 represents an ordered conformation of d(TpCpGpA) which dissociates to a less ordered structure upon raising the temperature. This ordered conformation does not result from an intramolecular rearrangement, as is shown by by spectra obtained by varying oligodeoxynucleotide concentration at constant pH. The ordered conformation differs from the Watson-Crick helix, as is shown from nuclear Overhauser enhancement experiments, as well as chemical shift data. An ordered conformation for d(TpCpGpA) was previously reported [Reid, D. G., Salisbury, S. A., Brown, T., & Williams, D. H. (1985) Biochemistry 24, 4325-4332].(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.