Abstract
Electroluminescence (EL) of organic and polymeric fluorescent materials programmable in the luminance is extremely useful as a non‐volatile EL memory with the great potential in the variety of emerging information storage applications for imaging and motion sensors. In this work, a novel non‐volatile EL memory in which arbitrarily chosen EL states are programmed and erased repetitively with long EL retention is demonstrated. The memory is based on utilizing the built‐in electric field arising from the remnant polarization of a ferroelectric polymer which in turn controls the carrier injection of an EL device. A device with vertically stacked components of a transparent bottom electrode/a ferroelectric polymer/a hole injection layer/a light emitting layer/a top electrode successfully emits light upon alternating current (AC) operation. Interestingly, the device exhibits two distinctive non‐volatile EL intensities at constant reading AC voltage, depending upon the programmed direct current (DC) voltage on the ferroelectric layer. DC programmed and AC read EL memories are also realized with different EL colors of red, green and blue. Furthermore, more than four distinguishable EL states are precisely addressed upon the programmed voltage input each of which shows excellent EL retention and multiple cycle endurance of more than 105 s and 102 cycles, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.