Abstract

We report the operational characteristics of ultra-small-scaled SONOS (below 50 nm gate width and length) and SiO 2/ SiO 2 structural devices with 0.5 um gate width and length where trapping occurs in a very narrow region. The experimental work summarizes the memory characteristics of retention time, endurance cycles, and speed in SONOS and SiO 2/ SiO 2 structures. Silicon nitride has many defects to hold electrons as charge storage media in SONOS memory. Defects are also incorporated during growth and deposition in device processing. Our experiments show that the interface between two oxides, one grown and one deposited, provides a remarkable media for electron storage with a smaller gate stack and thus lower operating voltage. The exponential dependence of the time on the voltage is reflected in the characteristic energy. It is ~0.44 eV for the write process and ~0.47 eV for the erase process in SiO 2/ SiO 2 structural device which is somewhat more efficient than those of SONOS structure memory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.