Abstract

Simultaneous coexpression of multiple proteins is essential for biotechnology and synthetic biology. Currently, the most popular polyprotein coexpression system utilizes the foot-and-mouth disease virus (FMDV) 2A peptide that mediates translational ribosome-skipping events. However, due to unfavorable consumer acceptance of transgenic products containing animal-virus sequences, novel non-viral 2A-like peptides from purple sea urchin (Strongylcentrotus purpuratus) and California sea slug (Aplysia californica) were investigated for polyprotein coexpression in this study. We demonstrated that these non-viral 2A sequences functioned similarly to their viral counterpart in polyprotein processing, in both plant and mammalian cells, and were successfully used to express a functional recombinant antibody. The new non-viral 2A-like sequences offer an alternative tool for engineering multigenic traits or production of protein complexes as biomedicine via coexpression of protein subunits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call