Abstract

We theoretically investigate the optical transition of an electron in graphene that is excited by near-field around a conical Au tip. The interaction between the near-field and the electron is calculated by tight-binding method. In the case of near-field, the wavevector of the electron changes by the optical absorption from the valence band to the conduction band. We show that the change of the wavevector is inversely proportional to the localization width of the near-field, which is given as a function of the distance between the tip and graphene. We calculate the near-field absorption probability as a function of k in the Brillouin zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.