Abstract

We discuss the advantages of using metric theories of gravity with curvature–matter couplings in order to construct a relativistic generalization of the simplest version of Modified Newtonian Dynamics (MOND), where Tully–Fisher scalings are valid for a wide variety of astrophysical objects. We show that these proposals are valid at the weakest perturbation order for trajectories of massive and massless particles (photons). These constructions can be divided into local and non-local metric theories of gravity with curvature–matter couplings. Using the simplest two local constructions in an FLRW universe for dust, we show that there is no need for the introduction of dark matter and dark energy components into the Friedmann equation in order to account for type Ia supernovae observations of an accelerated universe at the present epoch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call