Abstract

We consider the supersymmetric approach to Gaussian disordered systems like the random bond Ising model and Dirac model with random mass and random potential. These models appeared in particular in the study of the integer quantum Hall transition. The supersymmetric approach reveals an osp( 2 2 ) 1 affine symmetry at the pure critical point. A similar symmetry should not hold at other fixed points. We apply methods of conformal field theory to determine the conformal weights at all levels. These weights can generically be negative because of non-unitarity. Constraints such as locality allow us to quantize the level k and the conformal dimensions. This provides a class of (possibly disordered) critical points in two spatial dimensions. Solving the Knizhnik-Zamolodchikov equations we obtain a set of four-point functions which exhibit a logarithmic dependence. These functions are related to logarithmic operators. We show how all such features have a natural setting in the superalgebra approach as long as Gaussian disorder is concerned.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.