Abstract
The definition of a suitable Jordan analogue of C*-algebras (which we call JB*-algebras in this paper) was recently suggested by Kaplansky (see (26)). The theory of unital JB*-algebras is now comparatively well understood due to the work of Alfsen, Shultz and Størmer (1) from which a Gelfand-Neumark theorem for unital JB*-algebras can be obtained (26). Independently, from work on simply connected symmetric complex Banach manifolds with base point, Kaup introduced the definition of C*-triple systems in (14) and subsequently in (7) it was shown that every unital JB*-algebra is a C*-triple system. In this paper, we wish to extend this result to show that every JB*-algebra is a C*-triple system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.