Abstract
Non-uniqueness in law for three-dimensional Navier-Stokes equations forced by random noise was established recently in Hofmanov$\acute{\mathrm{a}}$ et al. (2019, arXiv:1912.11841 [math.PR]). The purpose of this work is to prove non-uniqueness in law for the Boussinesq system forced by random noise. Diffusion within the equation of its temperature scalar field has a full Laplacian and the temperature scalar field can be initially smooth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.